Lithium-ion batterijen

Lithium-ion batterijen

De Nobelprijs voor de Chemie is dit jaar uitgereikt voor het uitvinden van de lithium-ion batterij. Wat is deze batterij en waarom is deze zo significant? Op 9 oktober besliste het Nobelprijscomité om de prijs voor Chemie uit te reiken aan het drietal John B. Goodenough van de University of Texas in Austin, M. Stanley Whittingham van de Binghamton University en Akira Yoshino van de Meijo University. Zij werkten gedurende de jaren ’70 en ’80 aan de ontwikkeling van de lithium-ion batterij en slaagden erin om – voortbouwend op elkaars werk – dit van een louter theoretisch concept naar een werkende toepassing te brengen. Maar wat is nu datgene wat de lithium-ion batterij zo bijzonder maakt? Wel, het antwoord is relatief kort: hij is overal. Smartphones, laptops, gereedschap, elektrische wagen… zelfs tot in de Mars Curiosity Rover. Lithium-ion batterijen zijn alomtegenwoordig. Hoe werkt zo’n batterij nu? Een batterij bestaat steeds uit twee delen: een anode (het positief geladen gedeelte) en een kathode (het negatief geladen gedeelte). Als de batterij wordt gebruikt, bewegen er geladen lithiumdeeltjes van de anode naar de kathode en ontstaat er een stroom  door de verbinding. Dit gaat zolang door totdat alle lithiumdeeltjes zich aan de kathode bevinden. Bij een niet-herlaadbare batterij zou dit nu het einde zijn. Een lithium-ion batterij is echter oplaadbaar dus als deze aangesloten wordt aan een stopcontact, bewegen de lithiumdeeltjes weer de andere richting uit en kan hij nog eens gebruikt worden. De verdienste van het laureatenteam was dat zij erin geslaagd zijn om het lithiumion (wat zeer reactief is en wel eens zou kunnen leiden tot explosies) stabiel te omvatten....
Nieuwe batterijen worden gemaakt van… CO2?!

Nieuwe batterijen worden gemaakt van… CO2?!

Hoe koolstofdioxide kan gaan van staatsvijand tot nuttig product We stoten te veel CO2 uit, dat weet iedereen. Twee doorbraken in de batterijwereld zorgen er nu voor dat het gas kan gebruikt worden om batterijen mee te maken. Die zouden meer energie kunnen opslaan én onze uitstoot kunnen verlagen. CO2 is de grote vijand van iedereen die aan het klimaat denkt. Zelfs de sceptici van harde klimaatregelingen begrijpen dat onze productie van dergelijke broeikasgassen moet dalen. Waarom vangen we onze uitstoot dan niet gewoon op en steken het daarna terug ondergronds? Die techniek, genaamd Carbon Capture & Sequestration, wordt al toegepast maar is zeer duur. Bijkomstig is deze techniek ook zeer energie intensief: bij een elektriciteitsproducerende gascentrale zou namelijk tot 30% van de geproduceerde elektriciteit gebruikt moeten worden om de CO2 te scheiden uit de uitlaatgassen.  Toch kunnen twee recente doorbraken deze techniek binnenkort rendabel maken.   Van gas tot batterij Onderzoekers aan het MIT bedachten een manier om de CO2-productie van een elektriciteitscentrale om te zetten in een bruikbare grondstof. Ze lossen het gas op in een waterige oplossing met daarin een amine (i.e. een organische stof met een stikstofatoom in de keten). Op die manier kunnen ze een efficiënte elektrolyt maken, 1 van de 3 hoofdbestanddelen van batterijen. Samen met een koolstofanode en een kathode gemaakt van lithium, heeft deze batterij het potentieel om tot 7 keer meer energie op te slaan dan een even grote lithium-ion batterij die je nu overal tegenkomt. Stel je voor: een smartphone die een volledige week meegaat, in plaats van één dag. Terzelfdetijd wordt diezelfde batterij gemaakt van koolstofdioxide die onze...