Koeling bij elektrische voertuigen

Koeling bij elektrische voertuigen

Net zoals een wagen met een traditionele verbrandingsmotor, dient ook ‘het hart’ van een elektrische wagen gekoeld te worden. Dit zijn voornamelijk de batterij en de elektrische motoren. Daarnaast dienen ook bepaalde elektronica-componenten voorzien te worden van koeling.   Koeling bij elektromotoren kan met lucht of met een vloeistof zoals water gerealiseerd worden. Doordat de warmtegeleiding van water ongeveer 25 keer hoger ligt dan die van lucht, wordt vaak voor waterkoeling gekozen. Water kan veel meer warmte afvoeren op dezelfde tijdspanne bij eenzelfde warmtewisselend oppervlak als lucht. Daarnaast is het ook noodzakelijk dat de batterijen gekoeld worden. Tijdens het rijden moet een auto vaak accelereren en remmen, waardoor de batterij veelvuldig oplaadt en ontlaadt. Bij dergelijke cycli wordt warmte gegenereerd. Hoe meer men optrekt en remt, des te meer warmte er ontwikkeld wordt. Batterijtechnologie evolueert voortdurend, met een hogere energiecapaciteit per volume tot gevolg. Daarom is koeling van essentieel belang, om oververhitting te vermijden. Het gewicht van de wagen speelt een belangrijke rol bij de actieradius van het voertuig. Ook wensen autoconstructeurs technologie zo efficiënt, compact en gestroomlijnd mogelijk in te bouwen. Fabrikanten trachten daarom de koeling van wagens optimaal te dimensioneren. Traditioneel worden koelingscomponenten met een vaste structuur ontworpen. Deze bestaan uit koelvinnen of koelpennen, die op gelijke onderlinge afstand gedimensioneerd worden. De koelingscomponent wordt tegen de te koelen wand gemonteerd. Er zal warmteoverdracht plaatsvinden tussen de opgewarmde wand en de component. Op zijn beurt zal de koelingscomponent de warmte afgeven aan het koelmiddel. De mate waarin de warmteafgifte plaatsvindt, is afhankelijk van het ontwerp van de koelstructuur. Door de steeds grotere vraag naar compactere en efficiëntere ontwerpen,...
Lithium-ion batterijen

Lithium-ion batterijen

De Nobelprijs voor de Chemie is dit jaar uitgereikt voor het uitvinden van de lithium-ion batterij. Wat is deze batterij en waarom is deze zo significant? Op 9 oktober besliste het Nobelprijscomité om de prijs voor Chemie uit te reiken aan het drietal John B. Goodenough van de University of Texas in Austin, M. Stanley Whittingham van de Binghamton University en Akira Yoshino van de Meijo University. Zij werkten gedurende de jaren ’70 en ’80 aan de ontwikkeling van de lithium-ion batterij en slaagden erin om – voortbouwend op elkaars werk – dit van een louter theoretisch concept naar een werkende toepassing te brengen. Maar wat is nu datgene wat de lithium-ion batterij zo bijzonder maakt? Wel, het antwoord is relatief kort: hij is overal. Smartphones, laptops, gereedschap, elektrische wagen… zelfs tot in de Mars Curiosity Rover. Lithium-ion batterijen zijn alomtegenwoordig. Hoe werkt zo’n batterij nu? Een batterij bestaat steeds uit twee delen: een anode (het positief geladen gedeelte) en een kathode (het negatief geladen gedeelte). Als de batterij wordt gebruikt, bewegen er geladen lithiumdeeltjes van de anode naar de kathode en ontstaat er een stroom  door de verbinding. Dit gaat zolang door totdat alle lithiumdeeltjes zich aan de kathode bevinden. Bij een niet-herlaadbare batterij zou dit nu het einde zijn. Een lithium-ion batterij is echter oplaadbaar dus als deze aangesloten wordt aan een stopcontact, bewegen de lithiumdeeltjes weer de andere richting uit en kan hij nog eens gebruikt worden. De verdienste van het laureatenteam was dat zij erin geslaagd zijn om het lithiumion (wat zeer reactief is en wel eens zou kunnen leiden tot explosies) stabiel te omvatten....